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Abstract: - Time-delays are mainly caused by the time required to transport mass, energy or information, but they 

can also be caused by processing time or accumulation. Typical examples of such processes are e.g. pumps, liquid 

storing tanks, distillation columns or some types of chemical reactors. This paper deals with a design of universal 

and robust digital control algorithms for control of great deal of processes with time-delay. These algorithms are 

realized using the digital Smith Predictor (SP) based on polynomial approach – by minimization of the Linear 

Quadratic (LQ) criterion. For minimization of the LQ criterion is used spectral factorization principle with 

application of the MATLAB Polynomial Toolbox. The designed polynomial digital SPs were verified in 

simulation conditions (and also using an experimental model of a laboratory heat exchanger). The main 

contribution of this paper is an experimental simulation examination of the robustness of the designed control 

algorithms. The program system MATLAB/SIMULINK was used for this purpose.  

 

Key-Words: - Digital control, LQ control, Polynomial approach, Simulation of control loops, Smith Predictor, 

Time-delay, Robustness.  
  

1   Introduction 
Time-delay may be defined as the time interval 

between the start of an event at one point in a system 

and its resulting action at another point in the system. 

Delays are also known as transport lags or dead 

times; they arise in physical, chemical, biological and 

economic systems, as well as in the process of 

measurement and computation.  

The existence of pure time lag, regardless if it is 

present in the control or/and the state, may cause 

undesirable system transient response, or even 

instability. One of available approaches of optimal 

control such processes is a design of the robust 

controllers.    

Historically, first modifications of time-delay 

algorithms were proposed for continuous-time 

(analog) controllers (see e.g. [1] - [6]. When a high 

performance of the control process is desired or the 

relative time-delay is very large, a predictive control 

strategy is one of possible approaches for a control of 

time-delay processes. The predictive control strategy 

includes a model of the process in the structure of the 

controller. The first time-delay compensation 

algorithm was proposed by Smith [7] in 1957. This 

time-delay compensator (TDC) known as the SP 

contained a dynamic model of the process and it can 

be considered as the first model predictive algorithm.  

 In industrial practice the implementation of the 

time-delay compensators based on continuous-time 

technique was difficult. Therefore the SPs and its 

modified versions can be implemented since 1980s 

together with the use of microprocessors in the 

industrial controllers. The first digital time-delay 

compensators are presented (see e.g. in [8]).  

One of possible approaches to control of 

processes with time-delay is digital SP based on 

polynomial theory. Polynomial methods are design 

techniques for complex systems (including 

multivariable), signals and processes encountered in 

Control, Communications and Computing that are 

based on manipulations and equations with 

polynomials, polynomial matrices and similar 

objects. Systems are described by input-output 

relations in fractional form and processed using 

algebraic methodology and tools. The design 

procedure is thus reduced to algebraic polynomial 

equations [9]. Controller design consists in solving 

polynomial (Diophantine) equations. The 

Diophantine equations can be solved using the 

uncertain coefficient method – which is based on 

comparing coefficients of the same power. This is 

transformed into a system of linear algebraic 

equations [10]. Because the classical continuous-time 

SP is not suitable for control of unstable and 

integrating time-delay processes, the polynomial 

digital LQ SP for control of unstable and integrating 

time-delay processes has been designed in [11]. 

Much attention is currently paid to Model 

Predictive Control (MPC) of time-delay systems [8], 

[12], [13]. Disadvantage of MPC methods are quite 
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complicated optimization calculations. And 

moreover, in case of the adaptive MPC it is necessary 

to apply recursive algorithms for estimation of 

process model parameters. The proposed digital LQ 

SPs eliminate these computational disadvantages. 

It is obvious that the majority processes met in 

industrial practice are influenced by uncertainties. 

The uncertainties suppression can be solved either by 

implementation adaptive control or robust control. 

Some adaptive (self-tuning) modifications of the 

digital SPs are designed in [14] – [16]. Two versions 

of these controllers were implemented into 

MATLAB/SIMULINK Toolbox [17], [18]. 

Until recently, robust control and adaptive control 

have been viewed as two control techniques which 

are used for controller design in the presence of 

process model uncertainty (process model variations) 

[19].  

From a robust control point of view, adaptive 

control is a method used for reducing the uncertainty 

level of the process model in closed control loops. 

Furthermore, the design of a robust controller deals 

in general with designing the controller in the 

presence of process uncertainties. This can 

simultaneously be: parameter variations (affecting 

low- and medium-frequency ranges) and 

unstructured model uncertainties (often located in 

high-frequency range). While in adaptive control the 

adaptation suppresses the parametric variations, the 

problem of suppressing unstructured model 

uncertainties remains. 

The aim of this paper is the experimental 

examination of the robustness of control of time-

delay processes. Robustness is the property when the 

dynamic response of closed control loop (including 

stability of course) is satisfactory not only for the 

nominal process transfer function used for design but 

also for the entire (perturbed) class of transfer 

functions that express uncertainty of the designer 

about dynamic environment in which real controller 

is expected to operate. The design of robust digital 

controllers for systems with time delay is 

investigated in [20]. A particular class of digital 

controller is considered, namely based on the pole 

assignment approach.        

A more comprehensive discussion of robustness 

is referred in literature when design using frequency 

methods is considered. For root locus design, the 

natural measure of robustness is in effect gain 

margin. One can readily compare the system gain at 

the desired operating point and the point(s) of onset 

of instability to determine how much gain change is 

acceptable. Just this method will be used for 

investigation of the robustness control time-delay 

processes.                  

The paper is organized in the following way. The 

general problem of a control of the time-delay 

systems with regard to robustness is described in 

Section 1. The fundamental principle of digital SP is 

described in Section 2. Two versions of the primary 

polynomial LQ controller, which are components of 

the digital SP, are proposed in Section 3. The 

simulation verification of individual control-loops in 

term of their robustness are presented in Section 4. 

Results of simulation experiments for the control of 

the laboratory heat exchanger are introduced in 

Section 5.  The discussion and compare of both 

control algorithms (advantages and availability for 

application in real-time conditions) are given in  

Section 6.  

  

 

2  Principle of Digital SP 

 
Fig. 1. Block Diagram of a Digital SP 

 

The discrete versions of the SP and its modifications 

are suitable for time-delay compensation in industrial 

practice. The block diagram of a digital SP (see [14], 

[15]) is shown in Fig. 1. The function of the digital 

version is similar to the classical continuous-time 

version. 

Number of higher order industrial processes can 

be approximated by a reduced order model with a 

pure time-delay. In this paper the following second-

order linear model with a time-delay is considered 
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The term z-d represents the pure discrete time-

delay. The time-delay is equal to 0dT  where 0T is the 

sampling period. 

The block Gm(z-1) represents process dynamics 

without the time-delay and is used to compute an 

open-loop prediction. The numerator in transfer 

function (1) is replaced by its static gain B(1), i.e. for 
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z = 1. This is to avoid problem of controlling a model 

with a B(z-1), which has non-minimum phase zeros 

caused by a high sampling period or fractional delay. 

Since   B(z-1) is not controllable as in the case of a 

time-delay, it is moved out of the prediction model 

Gm(z-1) and is treated together with the time-delay 

block, as shown in Fig. 1. The difference between the 

output of the process y and the model including time-

delay ŷ is the predicted error êp as shown in    Fig. 1, 

whereas e and d are the error and the measured 

disturbance, w is the reference signal. The primary 

(main) controller Gc(z-1) can be designed by different 

approaches (for example digital PID control or 

methods based on polynomial approach). The 

outward feedback-loop through the block in Fig. 1 is 

used to compensate load disturbances and modelling 

errors. 

  
 

3  Design of Primary Polynomial 2DOF      

Controller 
 

 
Fig. 2 Block diagram of a closed loop 2DOF control 

system 

 

Polynomial control theory is based on the apparatus 

and methods of linear algebra. The design of the 

controller algorithm is based on the general block 

scheme of a closed-loop with two degrees of freedom 

(2DOF) according to Fig. 2. 

The controlled process is given by the transfer 

function in the form 

 

1
1

1

( ) ( )
( )

( ) ( )
p

Y z B z
G z

U z A z





   (2) 

where A and B are the second order polynomials. The 

controller contains the feedback part Gq and the 

feedforward part Gr. Then the digital controllers can 

be expressed in the form of a discrete transfer 

functions 
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where  1 11K z z   . 

According to the scheme presented in Fig. 2 and 

equations (2) – (4) it is possible to derive a 

polynomial Diophantine equation for computation of 

feedback controller parameters as coefficients of the 

polynomials Q and P  

 
1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )A z K z P z B z Q z D z         (5)  

where  1D z  is the characteristic polynomial. 

 Asymptotic tracking of the reference signal w is 

provided by the feedforward part of the controller 

which is given by solution of the following 

polynomial Diophantine equation 

  1 1 1 1 1( ) ( ) ( ) ( )wS z D z B z R z D z       (6) 

For a step-changing reference signal value w, 

polynomial        Dw (z-1) = 1 - z-1 and S is an auxiliary 

polynomial which does not enter into the controller 

design. Then it is possible to derive the polynomial R 

from equation (6) by substituting z = 1 

 0
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(1)

D
R r

B
   (7) 

The 2DOF controller output is given by 
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 (8) 

Two primary polynomial LQ controllers are 

derived in this paper using minimization of the LQ 

criterion [21]. For the minimization procedure is used 

spectral factorization by means of the MATLAB 

Polynomial Toolbox 3.0 [22].  

 

3.1 Minimization of LQ Criterion Using u(k)  
In the first case the linear quadratic control methods 

try to minimize the quadratic criterion by 

penalization the value of the square controller output 

u(k) 

     2 2

0

( ) ( ) ( )u

k

J w k y k q u k




    (9) 

where qu is the so-called penalization constant (really 

positive number), which gives the rate of the 

controller output on the value of the criterion (where 
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the constant at the first element of the criterion is 

considered equal to one). The standard procedure for 

minimization of criterion (9) is based on the state 

description of the system and leads to solution of the 

Riccati equation. In this paper, criterion minimization 

will be realized through the spectral factorization for 

an input-output description of the system  

            1 1 1

uA z q A z B z B z D z D z     (10) 

where δ is a constant chosen so that d0 = 1. 

Spectral factorization of polynomials of the first 

and the second degree can be computed simply by an 

analytical way [11], [23]; the procedure for higher 

degrees must be performed iteratively. Although   

A(z-1) and B(z-1) are the second degree polynomials 

(spectral factorization (10) can be computed by an 

analytical way), the  MATLAB Polynomial Toolbox 

is used for this computation. The factorized 

polynomial must by also of second degree 

  1 1 2

2 21 221D z d z d z      (11) 

The file spf.m by command 

  d spf a qu a ' b b'      (12) 

was used in this paper for computation of 

spectral factorization (10). 
 It is obvious that by using of the spectral 

factorization, only two parameters d21 and d22 of the 

second degree polynomial D2(z-1) (11) can be 

computed. This approach is applicable only for 

control of processes without time-delay (out of SP ). 

The design of primary controller in the digital SP 

structure requires usage of the fourth degree 

polynomial  

  1 1 2 3 4

4 1 2 3 41        D z d z d z d z d z  (13) 

in equations (5) and (6). The polynomial D2(z-1) (11) 

has two different real poles α, β or one complex 

conjugated pole 
1,2z j    (in the case of 

oscillatory systems). These poles must be included 

into polynomial D4(z-1) (15) and other two poles γ, δ 

are user-defined real poles. A suitable pole 

assignment was designed for both types of the 

processes:  

 

1st possibility: 

Polynomial (13) has two different real poles α, β 

(computed from (12)) and user-defined real poles γ, 

δ. Then it is possible to write polynomial (13) as a 

product root of factor 

       4D z z z z z          (14) 

and its individual parameters can be expressed as 

 
 

   

1

2

3

4

( )

( )

d

d

d

d

   

     

     



    

    

      



 (15) 

2nd possibility: 
Polynomial (13) has the complex conjugate pole

1,2z j   (computed from (12)) and user-defined 

real poles γ, δ. Then polynomial (13) has the form 

      4D z z j z j z z           

  (16) 

and its individual parameters can be expressed as 
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 (17) 

The control algorithm based on the LQ control 

method contains the following steps: 

The parameters of the polynomial D2(z-1) are 

computed using command (12).  

If the polynomial (13) has the real poles α, β, its 

parameters are computed according to equations 

(15), otherwise, they are computed according to 

equations (17). 

Then the digital 2DOF controller (8) can be 

expressed in the form  
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where 

 
1 2 3 4

0
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1   




d d d d
r

b b
 (19) 

and parameters 0 1 2, ,q q q  are computed from (5). The 

primary 2DOF controller output is given by 

         

     

0 0 1 2

1 1
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u k r w k q y k q y k q y k

p u k p u k

  (20) 

3.2  Minimization of LQ Criterion Using   

Increment Δu(k)  
In the second case the linear quadratic control 

methods try to minimize the quadratic criterion by 

WSEAS TRANSACTIONS on SYSTEMS Vladimír Bobál, Petr Dostál, Marek Kubalčík

E-ISSN: 2224-2678 237 Volume 14, 2015



penalization of the incremental value of the controller 

output Δu(k) 

     2 2

0

( ) ( ) ( )



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k

J w k y k q u k  (21) 

Equation (10) for computation of the spectral 

factorization changes into  
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z A z q z A z
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It is obvious that after arrangement and 

substitution the first term of the left side (22) has this 

form 

   2 3 1 2 3

1 2 3 1 2 31 1        s s s u s s sa z a z a z q a z a z a z

  (23)   

where     

  1 1 2 3

1 2 31      s s s sA z a z a z a z  (24) 

and 
1 1 2 2 1 3 21; ; .s s sa a a a a a a        

Because (24) is the third degree polynomial 

whose parameters and poles α, β and γ it is impossible 

to compute by an analytical way, the MATLAB 

Polynomial Toolbox 3  was used for their 

computation using command (12). 

The characteristic polynomial is the sixth degree 

polynomial in this case 

 
 1 1 2 3
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Spectral factorization (22) gives three optimal 

parameters of polynomial (24) and then it is possible 

to write characteristic polynomial (25) as a 

combination of polynomial (24) As(z) and product 

root of factors in positive power of variable z            

      3 2

6 1 2 3         s s sD z z a z a z a z z z

  (26) 

where , ,    are user-defined real poles. After 

modification (25) the characteristic polynomial is in 

the following form 

  6 5 4 3 2

6 1 2 3 4 5 6      D z z d z d z d z d z d z d

  (27) 

After comparison of (26) and (27) it is possible to 

obtain expressions for computation of individual 

parameters of polynomial (27) 
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  (28) 

Then the 2DOF controller design consists of 

determination of parameters (28) of polynomial (27) 

using command (12) from the Polynomial Toolbox 

and solution of the Diophantine equation for 

computation of feedback controller parameters  
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and from expression (14)  
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The primary 2DOF controller output is given by 
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  (32) 

4  Simulation Verification 
Numerical study, modelling and simulation are 

useful tools for the design of control systems [24] - 

[26].    

A simulation verification of the designed control 

algorithms was performed in MATLAB/SIMULINK 

environment. The robustness of individual control 

loops was experimentally investigated by a change of 

the static gain of the nominal process model. From 

the point of view of the robust theory it is possible to 

consider these experiments on behalf of the gain 

margin determination by the parametric uncertainty 

influence.  

 The experimental process model was described 

by the second order continuous-time transfer function  

  
2 2 2 1


 

LsK
G s e

T s Ts
 (33) 

and for the nominal model the following parameters 

were choice: 2; 2; 1.25; 8   K T L . 

Then the continuous–time transfer function (nominal 
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continuous-time model) is in the form            

  
  

82

4 1 1


 

sG s e
s s

 (34) 

The individual simulation experiments are 

realized subsequently: the static gain K was increased 

as far as the control closed-loop was in the stability 

boundary (no damping oscillation was achieved).  

 

4.1 Control Using Primary Controller (20) 
Let us now discretize (34) using a sampling period   

T0 = 2 s. The discrete form of these transfer function 

is the nominal discrete model and it is expressed by 

 

  
1 2

1 4

1 2

0 4728 0 2076

1 0 7419 0 0821

 
 

 




 
L

. z . z
G z z

. z . z
  (35) 

For all experiments the penalization factor was 

chosen as qu = 2.  

The characteristic polynomial:      

  4 3 2

4 1.1461 0.4409 0.00652 0.0032    D z z z z z

The individual poles:

3796 0.7419; 0.1; 0.5          . 

The primary controller (16): 

       

     

0.342 0.9455 0.6775 1

0.0740 2 0.8513 1 0.487 2

   

     

u k w k y k y k

y k u k u k

  (36) 

 The control courses of the process output and 

controller output for the nominal model are shown in 

Fig. 3. 

 
Fig. 3 Control of nominal model  1

LG z - K = 2 

 

 

Perturbed models (with different static gain K):   

 
1 2

1 4

1 1 2

0 7092 0 3114
3:

1 0 7419 0 0821
P

. z . z
K G z z

. z . z

 
 

 


 

 
  (37) 

 
1 2

1 4

2 1 2

0 9456 0 4153
4:

1 0 7419 0 0821
P

. z . z
K G z z

. z . z

 
 

 


 

 
 

      (38) 

 

 
1 2

1 4

3 1 2

1 0402 0 4568
4 4:

1 0 7419 0 0821
P

. z . z
K . G z z

. z . z

 
 

 


 

 
 

      (39) 

  

Fig. 4 Control of perturbed model (37) - K = 3 

  

Fig. 5 Control of perturbed model (38) - K = 4 

 
Fig. 6 Control of perturbed model (39) - K = 4.4 

 

The control courses of the process output and 

controller output for the individual perturbed models 

(37) – (39) are shown in Figs. 4 - 6. It is obvious from 

Fig. 6 that for the static gain K = 4.4 is the closed-

loop control on the stability boundary.  
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4.2 Control Using Primary Controller (32) 
Nominal discrete model (35) and penalization factor 

qu = 2 was used for all simulation experiments. 

The characteristic polynomial: 

  6 5 4 3

6

2

1.6483 1.0427 0.372

 2.2920 04

0

0.0743 0.0067

   

   

D z z z z z

ez z
  

The individual poles:  

, 4567 0.2867 0.1346;

0.1; 0.2; 0.3.

  

  

    

  

i
 

The primary controller (32): 

       

     

0.1386 0.6963 0.8863 1

0.3581 2 0.0648 2 0.006 3

u k w k y k y k

y k u k u k

   

     

  (40) 

   
Fig. 7 Control of nominal model  1

LG z
 - K = 2 

 

The control courses of the process output and 

controller output for the nominal model are shown in 

Fig. 7. 

 

Perturbed models (with different static gain K):   

  
Fig. 8 Control of perturbed model with K = 3 

 

The   control   courses of the process output  and 

controller output for the individual perturbed models 

for K = 3; 4 and 6.6 are shown in Figs. 8 - 10. It is 

obvious from Fig. 10 that for model (41) with the       

K = 6.6 is the closed-loop control on the stability 

boundary.  

 
1 2

1 4

4 1 2

0 4728 0 2076
6 6:

1 0 7419 0 0821
P

. z . z
K . G z z

. z . z

 
 

 


 

 
      (41) 

  

Fig. 9 Control of perturbed model with K = 4 

  

Fig. 10 Control of perturbed model (41) - K = 6.6  

 

 

5  Simulation Control of Heat 

Exchanger  
Heat exchangers are used for the purpose of 

transferring heat from a hot fluid to a cold fluid. They 

are requisite in a range of industrial technologies, 

particularly in the energetic, metallurgical, chemical 

and processing of polymer and rubber materials. A 

new universal SP was successfully verified by 

control of a laboratory heat exchanger in simulation 

conditions.  

 

5.1 Laboratory Heat Equipment 
A scheme of the laboratory heat equipment [28] is 

depicted in Fig. 11. The heat transferring fluid (e. g. 

water) is transported using a continuously 

controllable DC pump (6) into a flow heater (1) with 

max. power of 750 W. The temperature of a fluid at 

the heater output T1 is measured by a platinum 

thermometer. Warmed liquid then goes through a 15 

meters long insulated coiled pipeline (2) which 

causes the significant delay (20 – 200 s) in the 
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system. The air-water heat exchanger (3) with two 

cooling fans (4, 5) represents a heat-consuming 

appliance. The speed of the first fan can be 

continuously adjusted, whereas the second one is of 

on/off type. Input and output temperatures of the 

cooler are measured again by platinum thermometers 

as T2, respective T3. The platinum thermometer T4 is 

dedicated for measurement of the outdoor-air 

temperature.  The laboratory heat equipment is 

connected to a standard PC via a technological 

multifunction I/O card MF 624. This card is designed 

for the need of connecting PC compatible computers 

to real world signals. The card is designed for 

standard data acquisition, control applications and 

optimized for use with Real Time Toolbox for 

SIMULINK.  

 

   
Fig. 11 Scheme of Laboratory Heat Equipment 

 

  On the basis of several identification 

experiments [12], one of the discrete model in the 

following form  

  
1 2

1 2

1 2

0.1494 0.028

1 0.6376 0.1407

 
 

 




 

z z
G z z

z z
 (42) 

with a sampling period T0 = 50 s was used for a 

simulation verification of the designed control 

algorithms. The simulation experiments   have been 

realized using minimization of both criterions (9) and 

(17). The process which is described by transfer 

function (42) was used in the Simulink control 

scheme for the verification of the dynamical 

behaviour for different penalization factors qu . 

  The following control conditions have been 

chosen for individual simulation experiments: 

 

 

 

 5.2 Control Using Primary Controller (20) 
1. Experiment, qu = 0.01 

The poles: 
0.1720; 0.01; 0.1           

      The characteristic polynomial:    

  4 3 2

4 0.1478 0.0309 0.003 3.6109 0 05D z z z z z e       

2.  Experiment, qu = 1 

The poles: 
7647 0.1725; 0.01; 0.1            

      The characteristic polynomial:     

  4 3 2

4 0.7012 0.0667 0.014 .32700 1 04D z z z z z e       

 
Fig. 12 Courses of process outputs,              

controller (16)  

 
Fig. 13 Courses of controller outputs,           

controller (20)   

 

3.  Experiment, qu = 3  

     The poles: 
     8597 0.7219; 0.01; 0.1           

      The characteristic polynomial:   

  4 3 2

4 0.2478 0.6044 0.068 .20601 6 04D z z z z z e       

  The courses of the process outputs and controller 

outputs for individual penalization factors qu are 

shown in Figs. 12 and 13. From these Figs. follows 

that for low value of  qu  the control courses oscillate. 

By increasing of qu the courses of the control 

variables are without overshoots.    
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5.3 Control Using Primary Controller (32) 
 1.  Experiment, qu = 0.01 

The poles: 

 
1739 , 0.2531 0.2824 ;

0.2; 0.3; 0.4

i  

  

    

  
  

The characteristic polynomial:    

  6 5 4 3

6

21.68

1.2

00

323 0.6149 0.1356

05 0.0052 6.0000 04e

D z z

z

z z

z

z

e

   

    
 

 
Fig. 14 Courses of process outputs,              

controller (32) 

 
Fig. 15 Courses of controller outputs –          

controller (32) 

2. Experiment, qu = 2 

The poles:  
1735 , 0.7482 0.1661 ;

0.2; 0.3; 0.4

i  

  

    

  
 

The characteristic polynomial:  

  6 5 4 3

6

2

2.2228 1.7782 0.56

.0252 0.0186 0.

1

000 4

0

2

D z z z

z

z z

z 

   


    

3.  Experiment, qu = 5  

The poles: 
1735 , 0.7915 0.1296 ;

0.2; 0.3; 0.4

i  

  

    

  
 

The characteristic polynomial:   

      
  6 5 4 3

6

2

2.3066 1.8973 0.6107

0.0293 0.0202 0.0027

D z z z z z

z z 

   


 

The courses of the process outputs and controller 

outputs for individual penalization factors qu are 

shown in Figs. 14 and 15. From these Figs. it is 

evident that the dynamical behaviour of the control 

variables is similar as in case of controller (20). 

However, the transient responses are slower and 

controller (32) is more conservative and robust than 

controller (20).      

 

 

6  Conclusion 
The paper presents an experimental simulation 

investigation of robust algorithms for control of time 

delay systems. The MATLAB Polynomial Toolbox 

3.0 is used for design of the polynomial digital SP. 

The primary controllers of the digital SP are based on 

minimization of the LQ criterion using spectral 

factorization. Two types of minimization of LQ 

criterions have been designed. In criterion (9) it is 

minimized a square of the controller output u(k) – 

controller (20). In criterion (21) it is minimized a 

square of the increment value of the controller output 

 u(k) – controller (32). Simulation experiments 

demonstrated the influence of static gain K 

(parametric uncertainty) on the course of control 

variables (robustness of the control-loop). From 

comparison of both methods it is evident that 

minimization criterion (9) leads to faster courses of 

control variables. However the control-loop is in the 

stability boundary for a lower value of K as in the 

case of minimization criterion (21). However 

minimization criterion (21) leads to quieter courses 

of control variables with their smaller oscillations for 

grater values of K. The controller (32) is more 

conservative and robust than controller (20). Both 

control algorithms were verified by the simulation 

control of the laboratory heat exchanger. By compare 

with MPC approach [11], [12], in the designed digital 

SPs there’s no need to use relatively complicated 

optimization on-line algorithms. From simulation 

experiments it is evident that both control algorithms 

are relatively simple and they are suitable for 

application in real-time conditions [29].   
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